土力学实验报告册

专	业							
班	级							
实验小组								
姓	名							
学	웅							
手	机							
E1	Email							

河北大学建筑工程学院

年 月

前言

根据建设部颁发的高校《土力学》教学大纲和陈仲颐、周景星等主编写的《土力学》教材要求,结合我院土木工程专业教学上的需要,在《土力学实验指导书》的基础上,编写了土力学实验报告册,旨在使教学规范化、科学化。在编写过程中,尽量做到与现行规范一致,结合生产实践单位土工实验室的具体规定,以其实用性和先进性最大程度地为教学服务。

实验报告册主要内容将土力学、地基与基础涉及到的有关土工的试验的实验报告编辑成册。每个实验内容包括目的、原理、步骤、记录格式及思考题等部分。重点内容包括土的颗粒分析、重度、含水量、液塑限、击实、固结、直剪和三轴剪切等试验。其中,带*的为选做实验内容。

本报告册严格按照教学大纲要求,力求简明扼要,通俗易懂,方便适用。

参与编写的有张建辉、丁继辉、麻玉鹏、袁满、余莉、吴兴征等。 2018 年 9 月

目 录

1	土的颗粒分析试验	3
2	土的密度试验	7
3	土的含水量(率)试验	9
4	土的液限、塑限的测定	11
5	土的击实试验	15
6	渗透定律试验*	18
7	侧限压缩试验(固结试验)	20
8	土的直接剪切试验	23
9	土的三轴试验*	26

1 土的颗粒分析试验

	班级	_小组	_姓名	_学号	_日期	_分数
1.1	实验目的					
1.2	基本原理					
1.3	仪器设备					
1.4	操作步骤					

1.5 记录格式

表 1.1 实验记录									
工和	呈名称	武 验	者	土样编号	_				
计	计 算 者								
风=	风干土质量 =g;								
小三	于 0.075 毫	米的土占总	土质量百分	数 =%					
2 毫	逐米筛上土	质量 =	_ g ;						
小三	于2毫米的	力土占总土质	质量百分数 c	$d_{\rm x} = _{__} \%;$					
2 毫	逐米筛下 土	质量 =	g ;						
细介	命分析时角	「取试样质量	<u> </u>	g					
		留筛土	累计留筛	小于该孔径的	小于该孔径的				
筛	孔径	质量	土质量		总土质量百分				
号	(mm)	//		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	数				
		(_g)	(g)	(g)	(%)				
	60								
	40								
	20								

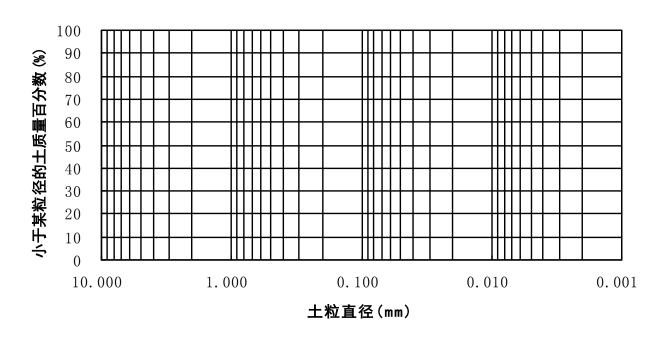


图 1.1 颗粒大小级配曲线

1.6 误差分析

1.7 评价土的不均匀性与连续性质

根据图 1.1 中的结果,填写下表。(不均匀系数: $C_u = d_{60}/d_{10}$ 表示, $C_u \ge 5$,称为不均匀土,反之称为均匀土;用曲率系数 $C_c = d_{30}^2/(d_{60} \times d_{10})$ 度量, $C_c = 1 \sim 3$ 为连续级配,> 3 或< 1 为不连续级配)

表 1.2 土的不均匀性汇总

曲线	d ₆₀	d_{10}	d ₃₀	C_{u}	C _c

1.8 思考题

[1.1] 什么是颗粒分析?颗分有什么意义?

[1.2] 实验室进行颗粒分析的方法有几种?各适用条件是什么?

[1.3] 如何做累积百分曲线? 曲线的陡缓程度说明什么问题?

[1.4] 用筛析法进行颗分时,如何保证实验精度?

2 土的密度试验

班级	}数
----	----

2.1 实验目的

2.2 基本原理

2.3 仪器设备

表 2.1 土的密度测定

I	注程名称 _	尔 土样编号			号 土样说明			
实	※验者		计算者		校核者		日期	
	试样 编号	环刀 号	湿土质 量 (g)	试样体 积 (cm³)	湿密度 (g/cm³)	试样含 水率 (%)	干密度 (g/cm³)	平均干密 度 (g/cm³)

2.6 思考题

[2.1] 什么是土的重度、天然重度、饱和重度、干重度?

[2.2] 开土样时怎样准确测定环刀内土的体积? 削土刀是否能用力反复刮平土面?

3 土的含水量(率)试验

班级小组	分数
------	----

3.1 实验目的

3.2 基本原理

3.3 仪器设备

本实验须进行两次平行测定,允许平行差如下表。

含水率(%)	允许平行差值(%)
<10	0. 5
10~40	1. 0
> 40	2. 0

表 3.1 土的含水率测定

工程名称 土样编号					土样说明			
实验者 _		计算	者	校材	亥者		∃期	
试样编 号	盒号	盒质 量(g)	盒加湿 土质量 (g)	盒加干 土质量 (g)	湿土 质量 (g)	干土质量(g)	含水率 (%)	平均含水率(%)

3.6 思考题

- [3.1] 土的含水量的测定方法有几种?各自适用条件是什么?
- [3.2] 如何使用烘箱?该试验的温度应控制在多少度?
- [3.3] 取样合为什么要上下都编号?
- [3.4] 土样烘干后能否立即称重?为什么?

4 土的液限、塑限的测定

	班级	_小组	_姓名	_学号	_日期	_分数
4.1	实验目的					

4.2 基本原理

4.3 仪器设备

平行差|w₁-w₂| < 2%。

76 或(100)	单	第一点	公一上	第三点	
克	位		第二点		
落锥深度	mm	3-5 或(3-4)	8-10 或(9-10)	13-15 或(20±1)	
要求	111111	3-3 54(3-4)	0-10 5%(7-10)	13-13 5x(20 ± 1)	
实测落锥	mm				
深度	111111				
平均落锥	mm				
深度	111111				
盒号	/				
盒重	(g)				
盒+温土重	(g)				
盒+干土重	(g)				
含水率ω	(%)				
平均含水	(%)				
率	(/0)				

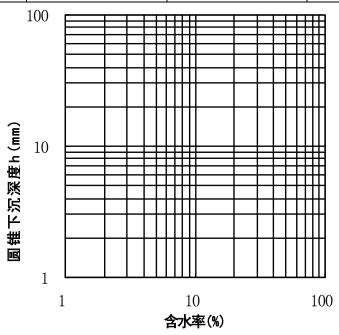


图 4.1 圆锥下沉深度与含水率关系

工程名称 土样编号				扁号	土样说明			
实验	者		_ 计算者		校核者	日	期	_
试样 编号	圆锥 下沉 深度 (mm)	盒号	湿土质 量 (g)	干土质 量 (g)	含水率 (%)	液限 (%)	塑限(%)	塑性指数
			(1)	(2)	(3)=[(1)/(2)-1]*100	(4)	(5)	(8)=(4)-(5)

4.6 思考题

[4.1] 什么是土的界限含水量? 土有几种界限含水量? 其物理意义是什么?

[4.2] 用平衡锥法测定土的液限时,如何将土调拌均匀? 试样杯中土样的装入过程有什么要求?

[4.3] 用搓条法测定土的塑限时,为什么不能无压滚动?

[4.4] 能否用电吹风的热风将土中含水率降低?

[4.5] 该实验为什么要取两个以上的平行样?

5 土的击实试验

班级	小组	姓名	学号	日期	分数

5.1 实验目的

5.2 基本原理

5.3 仪器设备

工程名称 _____ 土样编号 _____ 土样说明 _____ 日期____

实验仪器: 标准击实仪 土样类别:每层击数:						
			表 5.1 干	密度		
实	筒+土质	筒质量	湿土质量	密度	干密度	
验	量(g)	(g)	(g)	(g/cm^3)	(g/cm^3)	
序	(1)	(2)	(3)	(4)	(5)	
号			(1)-(2)	$\frac{(3)}{1000}$	$\frac{(4)}{1+0.01(2)}$	
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
最フ	大干密度	大于 5mm 颗粒含		校正后最大干密度		
	g/cm ³	量	%	g/cn	n^3	

实验者 计算者 校核者 日期 日本中華

估计	十最优	含水率:_			风干台	含水率	Š:		土粒比重:	
					表 5.2	含	水	率		
实验序	盒号	盒+湿 土质量 (g)	盒+ 土质 (g	量	盒质 量 (g)	湿± 量(干土质 量(g)	含水率 (%)	平均含 水率 (%)
号		(6)	(7))	(8)	(9	9)	(10)	(11)	(12)
						[6]-	[8]	[7]-[8]		
1										
2										
3										
4										
5										
6										
7										
8										
9									_	
10										
最优	最优含水率			饱和度			校正后最优含水率			
%				%			%			

5.6 思考题

[5.1] 影响土的击实性的因素有哪些?

[5.2]最优含水量的定义是什么,如何确定?

[5.3] 粗粒土是否存在最优含水量?如何获得粗粒土的最佳击实效果?

[5.4] 击实试验的工程意义?

6 渗透定律试验*

班级	小组	姓名	学号	日期	分数

6.1 实验目的

6.2 基本原理

6.3 仪器设备

6.6 思考题

[6.1] 当试样中水未流动时,三个测压管的水头与溢水口水面保持在同一高度,为什么?

[6.2] 为什么要在测压管水头稳定后测定流量?

[6.3] 分析影响渗透系数 K 的因素?

[6.4] 在试验过程中为什么要保持常水头?

7 侧限压缩试验(固结试验)

	班级	_小组	_姓名	_学号	_日期	_分数
7.1	实验目的					
7.2	基本原理					
7.3	仪器设备					
7.4	操作步骤					

- 7.5 记录格式
- 7.5.1 天然密度实验记录

平行差 $|\rho_1 - \rho_2| < 0.03 \text{ g/cm}^3$ 。

表 7.1 天然密度

<i>।</i>	环刀重	环刀 + 土	土重	环刀容积	ρ	平均密度
密	(g)	重(g)	(g)	(cm^3)	$\left(g/cm^{3}\right)$	$\rho \left(g/cm^3 \right)$
度						

7.5.2 天然含水率实验记录

平行差 $|w_1 - w_2| < 2\%$ 。

表 7.2 天然含水率

含水	盒号	盒重 (g)	盒+温土重 (g)	盒+干土重 (g)	w(%)	平均含水率 w(%)
/1/						
率						

7.5.3 固结实验记录

土粒比重由实验室提供。

表 7.3 固结变形实验

$\rho_0 =; w_0 =; G_s =;$										
$e_0 = \frac{\rho_w G_s (1 + 0.01 w_0)}{\rho_0} - 1 = \underline{\qquad}$										
	50 KP _a	100 KP _a	200 KP _a	400 KP _a						
时间 (mim)	百分表读	百分表读	百分表读	百分表读						
	数	数	数	数						
0										
1 ′										
5′										
10'										
总变形量 (mm)										
仪器变形量										
(mm)										
试样变形量										
(mm)										
$e_i = e_0 - (1 + e_0) \frac{\Delta h_i}{h_0}$										

7.5.4 制图

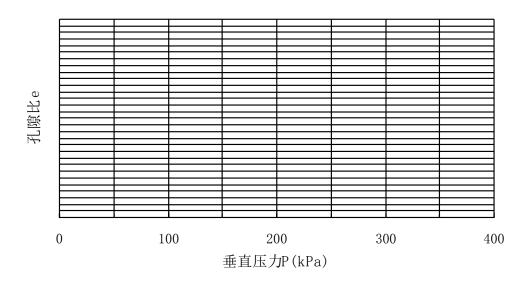


图 7.1 e- p 曲线图

7.6 思考题

[7.1] 固结试验按照稳定条件分为几种?如何保证快速压缩试验的准确性?

[7.2] 在调试仪器时,如何保证"两平一密"?

[7.3] 总变形量包括几部分?如何测定?如何用百分表进行计量?

8 土的直接剪切试验

班级	分数	_
----	----	---

8.1 实验目的

8.2 基本原理

8.3 仪器设备

8.5.1 数据处理

 $\tau_f = C \times R_f$

式中: τ_f — 相应于某一垂直压力下的抗剪强度(KP_a); C ——量力环校正系数 ($KP_a/0.01$ mm),从仪器上抄写; R_f ——土样破坏时量力环中百分表最大读数 (0.01mm)。

8.5.2 记录及制图

抗剪强度破坏曲线 200 200 200 200 200 200 200 300 400 100 100 200 300 400

图 8.1 Mohr-coulomb 抗剪强度参数确定

垂直压力 P (KPa)

请将回归线绘出,并表示出粘聚力c(kPa)和内摩察角 $\phi(^{\circ})$ 。

表 8.1 直接剪切实验记录

剪切	剪切方法:				至轮转速:量力环校正系数:					KP _a /0.01mm		
正应力	100 KP _a		200 KP _a		300 KP _a			400 KP _a				
手轮圈数	百分表读数	剪切位移	剪应力	百分表读数	剪切位移	剪应力	百分表读数	剪切位移	剪应力	百分表读数	剪切位移	剪应力
卷	0.01 mm	0.01 mm	KPa	0.01 mm	0.01 mm	KPa	0.01 mm	0.01 mm	KPa	0.01 mm	0.01 mm	KPa
(1)	(2)	(3)	(4)	(2)	(3)	(4)	(2)	(3)	(4)	(2)	(3)	(4)
1												
2												
3												
4												
5												

注:(3)=(1)×20-(2); (4)=(2)×C;

8.6 思考题

[8.1] 抗剪强度如何测定? 直接剪切试验按排水条件如何分类?

[8.2] 终止试验的标准是什么?

[8.3] 砂类土和粘性土的剪切过程有什么不同? c、 ϕ 值有何差异?

9 土的三轴试验*

班级	小组	姓名	学号	日期	分数
TIT ZN	/IN2H	$\psi + \chi_{-}$			7T* 47V
シェクへ	J ~11	/ _	1 1		/ 3 200

9.1 实验目的

9.2 基本原理

9.3 仪器设备

[该项空白即可]

9.6 思考题

[9.1] 三轴试验和直剪试验有什么不同? 为什么三轴试验更接近地基土的真实情况?

[9.2] 三轴试验开样有什么要求? 砂类土和粘性土试验结束后试样有什么不同? 试画出素描图。

[9.3] 试验过程中如何控制孔隙水压力 *u*? 如何进行水下样的饱和?

[9.4] 如果一组土样少于 3 个,如何准确测定 c 、 ϕ 值?

请单面打印该报告,左侧装订,注意留存,课程结束时提交。建 议实验前完成实验目的、原理、设备、步骤等部分的填写。每次实验 课前检查上次课的完成情况,并计入平时成绩。