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Effects of dynamic properties of rockfill materials 
on seismic response of concrete-faced rockfill dams

The objective of this study

With application of large-scale dynamic testing apparatus which are 
capable to implement complex loading and improvement of in-situ 
freezing sampling techniques, a number of test results on gravels 
become available. Based on these collective data, the sensitivity of 
seismic response on dynamic properties of rockfills should be 
clarified.---Complexity of dynamic tests
Numerical results presented will be instructive to gain a better
understanding on earthquake-resistant behavior of CFRDs and the 
effects of dynamic properties of rockfills.---Numerical Technique
By changing rockfill lithology and by adjusting grading and gravel 
content---Engineering construction



Finite element meshFinite element mesh

加荷分级及坝体特定单元的位置图

Fig. 4-1 The three-dimensional finite element 
discretization of Hongjiadu dam

Fig. 4-2 The plan-view of finite element 
discretization of Hongjiadu dam



Types of elementsTypes of elements

Rockfill
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Interface Elements：
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Global iteration number
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Experimental Equation

Experimental Equation

Three times
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Types of elements and maximum SectionTypes of elements and maximum Section
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The height of dam is 
182.3m. 

The total number of nodes 
is 3801 

The total number of 
elements is 3463 with 263 
face elements, 263 
interface elements and 42 
joint elements. 



Input WaveInput Wave
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Equivalent Equivalent LinearalizationLinearalization procedureprocedure

In this method, approximate nonlinear solutions can be obtained 
by a series of linear analyses provided the updated stiffness and 
damping are compatible with current effective shear strain 
amplitudes. 
The equivalent effective strain is estimated as a fraction (i.e., 0.65) 
of peak shear strain in order to define modulus and damping ratio 
for each iteration from the experimentally-achieved curves. 
Successive iterations are required until compatible dynamic 
parameters with strain level are acquired. 
Rayleigh’s concept of proportional damping is used to represent 
hysteric damping of soil 
Wilson-θ’s numerical integration scheme is combined with 
equivalent linearization procedure to solve the dynamic equations 
of the system step-by-step in time domain.
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1. Small-strain shear modulus；
2. Shear modulus varying with shear strain；
3. Hysteretic damping varying with shear strain；
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3. Peak shear strain；
4. Peak dynamic stress along slab；
5. Acceleration response spectra

Dynamic properties of rockfill

comparative aspects



Influence of Initial Shear Modulus of Rockfills
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Calculated fundamental natural frequencies for different values of G0

Cases 0G References Frequency（Hz）
A 312.2 Chen and Gu (1987) 1.0790
B 416.3 Chi and Lin (1998) 1.2282
C 499.1 Kong and Zou (1999) 1.3456
D 786.0 Uddin (1999) 1.7056

The test data of modulus ratio and damping ratio curve was used in these cases



Influence of Initial Shear Modulus of Rockfills
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Influence of Initial Shear Modulus of Rockfills
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Influence of Initial Shear Modulus of Rockfills
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Influence of Variation of Shear Modulus and 
Damping Ratio with Strain of Rockfills
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Influence of Variation of Shear Modulus and 
Damping Ratio with Strain of Rockfills

Dynamic property parameters for different cases

Case δ ξ Frequency (Hz)
C Test Test 1.3456

E Test Rollins
Upper

1.3557

F Test Rollins
Lower

1.3407

G Rollins Upper Test 1.3214
H Rollins Lower Test 1.1189
I Seed Lower Seed Upper 0.9519

G0=499.1

The natural frequency increases with increasing modulus curve

toward the upper bound. The value of damping ratio has little

influence on the frequency of dam.



Influence of Variation of Shear Modulus and 
Damping Ratio with Strain of Rockfills
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Influence of Variation of Shear Modulus and 
Damping Ratio with Strain of Rockfills
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Influence of Variation of Shear Modulus and 
Damping Ratio with Strain of Rockfills

Major stresses in case E and case I are relatively
lower;. Major stresses decrease with increasing
damping ratios.
Minor stresses in case H and case I are relatively
higher and tensile stresses increase with descending
modulus reduction curve of rockfills.
Therefore it is necessary to carry out optimum design
especially for face slab on the basis of dynamic
properties of rockfills and stress state of facing.

figure



Influence of Variation of Shear Modulus and 
Damping Ratio with Strain of Rockfills
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Effect of Confining-Pressure-
Dependency of Shear Modulus

Modulus ratio of main rockfill at 
various confining pressure
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As confining pressure increases,
the relations of δ  and γ  move
from the lower bound of testing
data range towards the upper.



Effect of Confining-Pressure-
Dependency of Shear Modulus
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Simulated by adjusting parameter a
(4)

Table 3. Dynamic property parameters and calculated natural frequencies for cases

Case a δ ξ Frequency
(Hz) Note

C 0.101 Test Test 1.3456
J Eq.(6) Eq.(4) Eq.(7) 1.3422
K Eq.(6) Eq.(4) Test 1.3411
L Eq.(5) Eq.(4) Eq.(7) 1.3335

n =0.89;
m =3;

maxξ =18%

c00017.005.0 σ+=a
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c 10*75.100024.0045.0 σσ −−+=
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aPolynomial function (7)



Effect of Confining-Pressure-
Dependency of Shear Modulus
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the difference between distribution
of peak accelerations along depth in
downstream slope and in upstream
slope is noticeable. The
amplification increases gradually
from bottom to crest in upstream
slope. However, another
amplification region of acceleration
occurs at the depth of 1/2H in
downstream slope due to reflection
of surface waves.
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Some Conclusions

(1) The effect of shear modulus on the natural frequency is 
stronger compared with that of damping ratio curve. The 
natural frequency of the equivalent linear vibration system of 
dam increases with increasing shear modulus. Both the initial 
shear modulus and modulus reduction curve have 
considerable influence on acceleration response spectra 
characteristics at the dam crest. The frequency band is narrow 
when the higher moduli are used. However the spectra curves 
is almost independent of damping ratio curve.
(2) Peak major principal stresses of slab decreases with the 
increase of damping ratios of rockfills while absolute values 
of minor principal stresses (tensile stresses) of slab increases
with decreasing modulus curve. 



Some Conclusions

(3) Shear strains at the dam crest increase with descending 
modulus curve and peak shear strains decrease with 
increasing damping ratios.
(4) The effect of the dependency of shear modulus reduction 
curve on confining pressure on seismic response can be 
overlooked as usual. 
(5)Reasonable selections of dynamic parameters of rockfills
should be made prudently in order to confidently evaluate 
earthquake-resistant behavior of CFRDs from three-
dimensional equivalent-linear seismic analysis.
(6)The three parameters equation provides a good fit for soil 
dynamic behavior over the wide range of shear strain. 



HypoplasticityHypoplasticity Bounding Surface model of Bounding Surface model of rockfillrockfill materials and materials and 
staticstatic--dynamic incrementallydynamic incrementally--iterative algorithm for CFRDiterative algorithm for CFRD

Water filling
construction

slab

Complex loading path

static dynamic
Model and algorithm

earthquake
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